

CENTER FOR DISRUPTIVE MUSCULOSKELETAL INNOVATIONS

Lumbar-sacral Destruction Fixation Biomechanics

Pls: Jwalant S. Mehta, MD and Vijay K. Goel, PhD, David S. Marks FRCS (Orth) Trainee: Amin Joukar, BS

Birmigngham Spine Centre, England
Engineering Center for Orthopedic Research Excellence (E-CORE)
The University of Toledo, Toledo, OH

WWW.NSFCDMI.ORG

Background

- Instrumenting the spinal column with lumbo-sacral deficiency is a challenge
- The deficiency can occur with destruction following tumors or in a lumbo-sacral deficient model
- Developed a customized/innovative implant
- Have used in 4 cases (3 sacral agenesis and 1 Neurofibromatosis)

Clinical Need and Industrial Relevance Current Options and Challenges

- Dunn MacCarthy hooks
 - Bio-mechanically not a sound implant
 - Implant bulk and prominence
 - Migration, loosening
 - Requires a good host bone stock

Clinical Need and Industrial Relevance Current Options and Challenges –contd.

- Iliac bolts
 - Bulky implants
 - Need to have an offset connector further increases bulk
 - Requires strong host bone for purchase of large diameter screws

Clinical Need and Industrial Relevance Current Options and Challenges –contd.

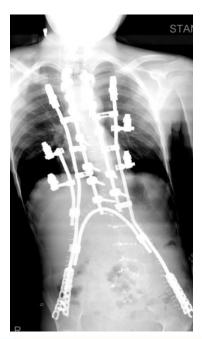
- S2AI construct
 - Best option in the intact spine
 - Inadequate / deficient anchor host bone

Clinical Need and Industrial Relevance

- Tuning Fork plate, Concept Evolution
 - Idea started with a VSP bent over and placed securely over intact lliac crest
 - Evolved to the concept of a tuning fork that straddles the intact lliac crest providing a strong distal fix with screws
 - Fix in the thoracic spine / rib anchor points proximally.

Clinical Need and Industrial Relevance

- Tuning Fork plate
 - The 2 'prongs' of the tuning fork plate straddle the crest and are held with screws through the holes
 - Proximal construct varies with the available anchors



Clinical Need and Industrial Relevance

- Tuning Fork plate
 - Variable proximal construct
 Distal fix with Tuning fork plate

Project Aims

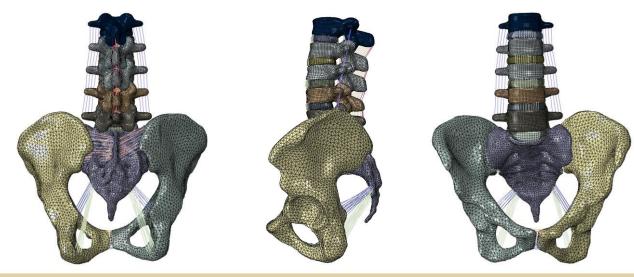
- Assess the bio-mechanical profile of the tuning fork plate compared to a standard S2AI pelvic fixation in a lumbo-sacral deficient model.
- Would help clarify indications and clinical profiling for the use of the tuning fork plate – a new concept

• .

Methods

- 6 specimens in each of the two groups, Group I and Group II
- Osteoporotic on DEXA scans
- X-rays for the specimens

Methods for the two groups



- Group I: S2AI pelvic fixation
- Group II: Tuning fork plate
 - Stabilization T10 L2 with 6.5 mm pedicle screws
 - L3 Sacrum removed _Deficiency Model
 - Tuning fork plate with flanges contoured and 'locking' screws inserted to fix the tuning fork to the pelvis
 - The rod of the implant contoured and fixed into the proximal pedicle screws

Methods

- FE modeling for comparison
 - Prepare FE models of the above construct protocols using our platform FE Model technology
 - Compute stresses, strains, load sharing and compare the two groups

Milestones & Timeline

Milestones	
Finishing model development	December 31, 2016
Data collection	July, 2017
Data analysis	August 31, 2017

Deliverables

- Quarterly presentation updates:
 - December 2016 conference call
 - Spring 2017 Spring Symposium @ UT (conference call option for non-UT teams)
 - June 2017 conference call
 - September 2017 Fall Symposium @ UCSF (conference call option for non-UCSF teams)
- Final written report including results October 31, 2017
- Specific work product (e.g. abstracts, manuscripts and potential new concept)

Proposed Budget

General Budget Outline	
Personnel	\$25,000
Imaging	\$1,000
Cadaver specimens	\$10,000
Total Direct	\$36,000
In directs (10%)	\$3,600
Total	\$39,600